Signatures of Liouvillian Exceptional Points in a Quantum Thermal Machine

Viewing a quantum thermal machine as a non-Hermitian quantum system, we characterize in full generality its analytical time-dependent dynamics by deriving the spectrum of its non-Hermitian Liouvillian for an arbitrary initial state. We show that the thermal machine features a number of Liouvillian e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX quantum 2021-12, Vol.2 (4), p.040346, Article 040346
Hauptverfasser: Khandelwal, Shishir, Brunner, Nicolas, Haack, Géraldine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viewing a quantum thermal machine as a non-Hermitian quantum system, we characterize in full generality its analytical time-dependent dynamics by deriving the spectrum of its non-Hermitian Liouvillian for an arbitrary initial state. We show that the thermal machine features a number of Liouvillian exceptional points (EPs) for experimentally realistic parameters, in particular, a third-order exceptional point that leaves signatures both in short- and long-time regimes. Remarkably, we demonstrate that this EP corresponds to a regime of critical decay for the quantum thermal machine towards its steady state, bearing a striking resemblance with a critically damped harmonic oscillator. These results open up exciting possibilities for the precise dynamical control of quantum thermal machines exploiting exceptional points from non-Hermitian physics and are amenable to state-of-the-art solid-state platforms such as semiconducting and superconducting devices.
ISSN:2691-3399
2691-3399
DOI:10.1103/PRXQuantum.2.040346