A Unique Representation of Cyclic Codes over GR(pn,r)

Let R be a Galois ring, GR(pn,r), of characteristic pn and of order pnr. In this article, we study cyclic codes of arbitrary length, N, over R. We use discrete Fourier transform (DFT) to determine a unique representation of cyclic codes of length, N, in terms of that of length, ps, where s=vp(N) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2022-10, Vol.11 (10), p.519
Hauptverfasser: Alabiad, Sami, Alkhamees, Yousef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a Galois ring, GR(pn,r), of characteristic pn and of order pnr. In this article, we study cyclic codes of arbitrary length, N, over R. We use discrete Fourier transform (DFT) to determine a unique representation of cyclic codes of length, N, in terms of that of length, ps, where s=vp(N) and vp are the p-adic valuation. As a result, Hamming distance and dual codes are obtained. In addition, we compute the exact number of distinct cyclic codes over R when n=2.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11100519