Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities
In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 − Δ p u + V ( x ) | u | p − 2 u − Δ p ( | u | 2 α ) | u | 2 α − 2 u = λ h 1 ( x ) | u | m − 2 u + h 2 ( x ) | u | q − 2 u , x...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2024-02, Vol.2024 (1), p.24-17, Article 24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter
α
and a concave-convex nonlinearity:
0.1
−
Δ
p
u
+
V
(
x
)
|
u
|
p
−
2
u
−
Δ
p
(
|
u
|
2
α
)
|
u
|
2
α
−
2
u
=
λ
h
1
(
x
)
|
u
|
m
−
2
u
+
h
2
(
x
)
|
u
|
q
−
2
u
,
x
∈
R
N
,
where
Δ
p
u
=
div
(
|
∇
u
|
p
−
2
∇
u
)
,
1
<
p
<
N
,
λ
≥
0
, and
1
<
m
<
p
<
2
α
p
<
q
<
2
α
p
∗
=
2
α
p
N
N
−
p
. The functions
V
(
x
)
,
h
1
(
x
)
, and
h
2
(
x
)
satisfy some suitable conditions. Using variational methods and some special techniques, we prove that there exists
λ
0
>
0
such that Eq. (
0.1
) admits infinitely many high energy solutions in
W
1
,
p
(
R
N
)
provided that
λ
∈
[
0
,
λ
0
]
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-023-01805-3 |