Prediction of RUL of Lubricating Oil Based on Information Entropy and SVM

This paper studies the remaining useful life (RUL) of lubricating oil based on condition monitoring (CM). Firstly, the element composition and content of the lubricating oil in use were quantitatively analyzed by atomic emission spectrometry (AES). Considering the large variety of oil data obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lubricants 2023-03, Vol.11 (3), p.121
Hauptverfasser: Liu, Zhongxin, Wang, Huaiguang, Hao, Mingxing, Wu, Dinghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the remaining useful life (RUL) of lubricating oil based on condition monitoring (CM). Firstly, the element composition and content of the lubricating oil in use were quantitatively analyzed by atomic emission spectrometry (AES). Considering the large variety of oil data obtained through AES, the accuracy and efficiency of the RUL prediction model may be reduced. To solve this problem, a comprehensive parameter selection method based on information entropy, correlation analysis, and lubricant deterioration analysis is proposed to screen oil data. Then, based on a support vector machine (SVM), the RUL prediction model of lubricant was established. By comparing the experimental results with the output data of the prediction model, it is shown that the accuracy and efficiency of the SVM prediction model established after parameter screening have been significantly improved.
ISSN:2075-4442
2075-4442
DOI:10.3390/lubricants11030121