Microstructure and mechanical properties of hot isostatic pressed tungsten heavy alloy with FeNiCoCrMn high entropy alloy binder

Microstructural development and mechanical properties of tungsten heavy alloy, WHA, with FeNiCoCrMn high entropy alloy, HEA, binder were investigated and compared to conventional WHA using Fe–Ni binder. Both WHAs, with HEA and conventional Fe–Ni binders, were fabricated by hot isostatic pressing at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2023-01, Vol.22, p.2897-2909
Hauptverfasser: Anwer, Zahid, Umer, Malik Adeel, Nisar, Fatima, Hafeez, Muhammad Arslan, Yaqoob, Khurram, Luo, Xian, Ahmad, Iftikhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructural development and mechanical properties of tungsten heavy alloy, WHA, with FeNiCoCrMn high entropy alloy, HEA, binder were investigated and compared to conventional WHA using Fe–Ni binder. Both WHAs, with HEA and conventional Fe–Ni binders, were fabricated by hot isostatic pressing at a temperature of 1450 °C in an argon environment. Scanning electron microscopy revealed that WHA with HEA and conventional binders possessed uniform and well-refined microstructures. Energy dispersive spectroscopy and X-ray diffraction, XRD, spectroscopy validated the formation and composition of HEA, existing as a skeletal network surrounding tungsten grains. HEA binder exhibited an overall increase of 42% in micro Vickers hardness values. Furthermore, hardness values of the tungsten heavy alloy were also seen to rise when fabricated with HEA binder. However, WHA sample with HEA binder was seen to undergo faster strain hardening and a premature failure, leading to lower values of ultimate strength and reduced ductility.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2022.12.078