Modeling the process of human tumorigenesis

Modelling the genesis of human cancers is at a scientific turning point. Starting from primary sources of normal human cells, it is now possible to reproducibly generate several types of malignant cell populations. Powerful methods for clonally tracking and manipulating their appearance and progress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-05, Vol.8 (1), p.15422-10, Article 15422
Hauptverfasser: Balani, Sneha, Nguyen, Long V., Eaves, Connie J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modelling the genesis of human cancers is at a scientific turning point. Starting from primary sources of normal human cells, it is now possible to reproducibly generate several types of malignant cell populations. Powerful methods for clonally tracking and manipulating their appearance and progression in serially transplanted immunodeficient mice are also in place. These developments circumvent historic drawbacks inherent in analyses of cancers produced in model organisms, established human malignant cell lines, or highly heterogeneous patient samples. In this review, we survey the advantages, contributions and limitations of current de novo human tumorigenesis strategies and note several exciting prospects on the horizon. A better understanding of the earliest stages of human cancer formation can enable future improvements in early detection, diagnosis and treatment. In this review, the authors summarize the methods enabling de novo tumorigenesis protocols to be applied to human cells and the insights derived from them to date, as well as the exciting and relevant technical developments anticipated to extend even further the utility of these strategies.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15422