Plant long non-coding RNAs: identification and analysis to unveil their physiological functions
Eukaryotic genomes encode thousands of RNA molecules; however, only a minimal fraction is translated into proteins. Among the non-coding elements, long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. LncRNAs are associated mainly with the regulation of the expression...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2023-10, Vol.14, p.1275399-1275399 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eukaryotic genomes encode thousands of RNA molecules; however, only a minimal fraction is translated into proteins. Among the non-coding elements, long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. LncRNAs are associated mainly with the regulation of the expression of the genome; nonetheless, their study has just scratched the surface. This is somewhat due to the lack of widespread conservation at the sequence level, in addition to their relatively low and highly tissue-specific expression patterns, which makes their exploration challenging, especially in plant genomes where only a few of these molecules have been described completely. Recently published high-quality genomes of crop plants, along with new computational tools, are considered promising resources for studying these molecules in plants. This review briefly summarizes the characteristics of plant lncRNAs, their presence and conservation, the different protocols to find these elements, and the limitations of these protocols. Likewise, it describes their roles in different plant physiological phenomena. We believe that the study of lncRNAs can help to design strategies to reduce the negative effect of biotic and abiotic stresses on the yield of crop plants and, in the future, help create fruits and vegetables with improved nutritional content, higher amounts of compounds with positive effects on human health, better organoleptic characteristics, and fruits with a longer postharvest shelf life. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2023.1275399 |