Convexity-Preserving Rational Cubic Zipper Fractal Interpolation Curves and Surfaces
A class of zipper fractal functions is more versatile than corresponding classes of traditional and fractal interpolants due to a binary vector called a signature. A zipper fractal function constructed through a zipper iterated function system (IFS) allows one to use negative and positive horizontal...
Gespeichert in:
Veröffentlicht in: | Mathematical and computational applications 2023-06, Vol.28 (3), p.74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A class of zipper fractal functions is more versatile than corresponding classes of traditional and fractal interpolants due to a binary vector called a signature. A zipper fractal function constructed through a zipper iterated function system (IFS) allows one to use negative and positive horizontal scalings. In contrast, a fractal function constructed with an IFS uses positive horizontal scalings only. This article introduces some novel classes of continuously differentiable convexity-preserving zipper fractal interpolation curves and surfaces. First, we construct zipper fractal interpolation curves for the given univariate Hermite interpolation data. Then, we generate zipper fractal interpolation surfaces over a rectangular grid without using any additional knots. These surface interpolants converge uniformly to a continuously differentiable bivariate data-generating function. For a given Hermite bivariate dataset and a fixed choice of scaling and shape parameters, one can obtain a wide variety of zipper fractal surfaces by varying signature vectors in both the x direction and y direction. Some numerical illustrations are given to verify the theoretical convexity results. |
---|---|
ISSN: | 2297-8747 1300-686X 2297-8747 |
DOI: | 10.3390/mca28030074 |