The complementary effect between biochar and ferrihydrite in sustainable Fenton-like oxidation of pollutant

Biochar (BC) and ferrihydrite (Fh) were used together in activation of H2O2 for removal of sulfamethazine (SMZ), a refractory antibiotic pollutant. The results show a complementary effect between biochar and ferrihydrite on activation of H2O2, namely biochar accelerated Fe(Ⅲ)/Fe(Ⅱ) cycle through ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Saudi Chemical Society 2023-07, Vol.27 (4), p.101684, Article 101684
Hauptverfasser: Guo, Sen, Shen, Cong, Gui, Yao, Li, Huiming, Lü, Jinhong, Li, Jianfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biochar (BC) and ferrihydrite (Fh) were used together in activation of H2O2 for removal of sulfamethazine (SMZ), a refractory antibiotic pollutant. The results show a complementary effect between biochar and ferrihydrite on activation of H2O2, namely biochar accelerated Fe(Ⅲ)/Fe(Ⅱ) cycle through electron donation/transfer, while ferrihydrite enhanced the yield of •OH through a sustainable release of dissolved Fe. Thus several times more •OH was produced in the co-activated system (BC + Fh/H2O2) than either in the ferrihydrite-catalyzed Fenton-like system (Fh/H2O2) or in the biochar-activated system (BC/H2O2). Consequently, a more efficient oxidation of SMZ was observed in BC + Fh/H2O2, in which the reaction rate constant (kobs) is 30.7 times in Fh/H2O2 and 6.08 times in BC/H2O2, respectively. This research provides a simple and sustainable strategy for enhancing the efficiency of Fenton-like oxidation of pollutants.
ISSN:1319-6103
DOI:10.1016/j.jscs.2023.101684