Synthesis of Ibuprofen Monoglyceride Using Novozym®435: Biocatalyst Activation and Stabilization in Multiphasic Systems
This work was focused on the enzymatic esterification of glycerol and ibuprofen at high concentrations in two triphasic systems composed of toluene+ibuprofene (apolar) and glycerol or glycerol–water (polar) liquid phases, and a solid phase with the industrial immobilized lipase B from Candida antarc...
Gespeichert in:
Veröffentlicht in: | Catalysts 2022-11, Vol.12 (12), p.1531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work was focused on the enzymatic esterification of glycerol and ibuprofen at high concentrations in two triphasic systems composed of toluene+ibuprofene (apolar) and glycerol or glycerol–water (polar) liquid phases, and a solid phase with the industrial immobilized lipase B from Candida antarctica named Novozym®435 (N435) acting as the biocatalyst. Based on a preliminary study, the concentration of the enzyme was set at 30 g·L−1 and the stirring speed at 720 r.p.m to reduce external mass transfer limitations. To obtain more information on the reaction system, it was conducted at a wide range of temperatures (50 to 80 °C) and initial concentrations of ibuprofen (20–100 g·L−1, that is, 97 to 483 mM). Under these experimental conditions, the external mass transfer, according to the Mears criterion (Me = 1.47–3.33·10−4 |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12121531 |