Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce
Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2021-01, Vol.208, p.111675, Article 111675 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2020.111675 |