Phosphate-Solubilizing Bacterium Acinetobacter pittii gp-1 Affects Rhizosphere Bacterial Community to Alleviate Soil Phosphorus Limitation for Growth of Soybean (Glycine max)
Phosphorus (P) availability is a major restriction to crop production, and phosphate-solubilizing bacteria (PSBs) in soils are responsible for P turnover. However, it remains unknown whether the application of PSB can facilitate both inorganic and organic P transformation and enhance function of pla...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2021-09, Vol.12, p.737116-737116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) availability is a major restriction to crop production, and phosphate-solubilizing bacteria (PSBs) in soils are responsible for P turnover. However, it remains unknown whether the application of PSB can facilitate both inorganic and organic P transformation and enhance function of plant rhizosphere bacteria. In this study, we applied Illumina MiSeq sequencing, plate-colony counting, quantitative PCR, and multiple ecological analyses. We found that the inoculation of PSB
Acinetobacter pittii
gp-1 significantly promoted the growth of soybean represented by better vegetation properties (e.g., plant height and root P) and increased activities of phosphatase (4.20–9.72 μg/g/h) and phytase (0.69–1.53 μmol/g/day) as well as content of indole acetic acid (5.80–40.35 μg/g/h). Additionally, the application of strain
A. pittii
gp-1 significantly increased abundances of both inorganic and organic P-cycling-related genes (i.e.,
phoD
,
bpp
,
gcd
, and
pstS
). More importantly, the application of
A. pittii
gp-1 could increase the function represented by P-cycling-related enzymes (e.g., phosphotransferase) of rhizosphere bacterial community based on functional profiling. To our knowledge, this is the first report that the application of PSB
A. pittii
promotes inorganic and organic P utilization and increases the function of rhizosphere bacterial community. Therefore, the PSB
A. pittii
gp-1 could be a good candidate for the promotion of soybean growth. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2021.737116 |