The Influence of Direct Non-Thermal Plasma Treatment on Soot Characteristics under Low Exhaust Gas Temperature
This study aimed to assess the effectiveness of nonthermal plasma (NTP) technology utilizing a dielectric barrier discharge (DBD) reactor, both with and without exhaust gas recirculation (EGR), in reducing soot particles and their impact on nitrogen oxides (NOx). The experiment involved maintaining...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2023-01, Vol.428, p.1002 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to assess the effectiveness of nonthermal plasma (NTP) technology utilizing a dielectric barrier discharge (DBD) reactor, both with and without exhaust gas recirculation (EGR), in reducing soot particles and their impact on nitrogen oxides (NOx). The experiment involved maintaining a constant flue gas flow rate of 10 l/min, employing high voltage values of 0, 6, and 10 kV, fixed frequency of 500 Hz and setting the various IMEP of 5, 6, and 7 bar and the engine speed at 2,000 rpm. The findings demonstrated that NTP was successful in removing NOx by approximately 16.84% and 17.01%, achieving particle matter (PM) removal efficiencies of around 60.79% and 81.13%, and effectively reducing activation energy by approximately 18.34% and 31.5% (with and without EGR, respectively) at a high voltage of 10 kV. These results highlight the potential of NTP technology in mitigating emissions and reducing the environmental impact associated with diesel engines. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202342801002 |