Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy

DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2023-05, Vol.24 (1), p.287-287, Article 287
Hauptverfasser: Wang, Qian, Qu, Yinquan, Yu, Yanhao, Mao, Xia, Fu, Xiangxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA methylation is one of the most abundant epigenetic modifications, which plays important roles in flower development, sex differentiation, and regulation of flowering time. Its pattern is affected by cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase). At present, there are no reports on C5-MTase and dMTase genes in heterodichogamous Cyclocarya paliurus. In this study, 6 CpC5-MTase and 3 CpdMTase genes were identified in diploid (2n = 2 ×  = 32) C. paliurus, while 20 CpC5-MTase and 13 CpdMTase genes were identified in autotetraploid (2n = 4 ×  = 64). 80% of identified genes maintained relatively fixed positions on chromosomes during polyploidization. In addition, we found that some DRM subfamily members didn't contain the UBA domain. The transcript abundance of CpC5-MTase and CpdMTase in male and female flowers of two morphs (protandry and protogyny) from diploidy was analyzed. Results showed that all genes were significantly up-regulated at the stage of floral bud break (S2), but significantly down-regulated at the stage of flower maturation (S4). At S2, some CpC5-MTase genes showed higher expression levels in PG-M than in PG-F, whereas some CpdMTase genes showed higher expression levels in PA-M than in PA-F. In addition, these genes were significantly associated with gibberellin synthesis-related genes (e.g. DELLA and GID1), suggesting that DNA methylation may play a role in the asynchronous floral development process through gibberellin signal. These results broaden our understanding of the CpC5-MTase and CpdMTase genes in diploid and autotetraploid C. paliurus, and provide a novel insight into regulatory mechanisms of DNA methylation in heterodichogamy.
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-023-09383-5