Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations

Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility lands...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2024-12, Vol.25 (1), p.322-24, Article 322
Hauptverfasser: Chen, Xiaoyang, Li, Keyi, Wu, Xiaoqing, Li, Zhen, Jiang, Qun, Cui, Xuejian, Gao, Zijing, Wu, Yanhong, Jiang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations. Through the comprehensive benchmarking, we demonstrate the superiority of Descart in revealing cellular heterogeneity and capturing tissue structure. Utilizing the graph of inter-cellular correlations, Descart shows its potential to denoise data, identify peak modules, and detect gene-peak interactions.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03458-6