Machine learning to predict venous thrombosis in acutely ill medical patients

The identification of acutely ill patients at high risk for venous thromboembolism (VTE) may be determined clinically or by use of integer‐based scoring systems. These scores demonstrated modest performance in external data sets. To evaluate the performance of machine learning models compared to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research and practice in thrombosis and haemostasis 2020-02, Vol.4 (2), p.230-237
Hauptverfasser: Nafee, Tarek, Gibson, C. Michael, Travis, Ryan, Yee, Megan K., Kerneis, Mathieu, Chi, Gerald, AlKhalfan, Fahad, Hernandez, Adrian F., Hull, Russell D., Cohen, Ander T., Harrington, Robert A., Goldhaber, Samuel Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of acutely ill patients at high risk for venous thromboembolism (VTE) may be determined clinically or by use of integer‐based scoring systems. These scores demonstrated modest performance in external data sets. To evaluate the performance of machine learning models compared to the IMPROVE score. The APEX trial randomized 7513 acutely medically ill patients to extended duration betrixaban vs. enoxaparin. Including 68 variables, a super learner model (ML) was built to predict VTE by combining estimates from 5 families of candidate models. A “reduced” model (rML) was also developed using 16 variables that were thought, a priori, to be associated with VTE. The IMPROVE score was calculated for each patient. Model performance was assessed by discrimination and calibration to predict a composite VTE end point. The frequency of predicted risks of VTE were plotted and divided into tertiles. VTE risks were compared across tertiles. The ML and rML algorithms outperformed the IMPROVE score in predicting VTE (c‐statistic: 0.69, 0.68 and 0.59, respectively). The Hosmer‐Lemeshow goodness‐of‐fit P‐value was 0.06 for ML, 0.44 for rML, and
ISSN:2475-0379
2475-0379
DOI:10.1002/rth2.12292