DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives angiotensin II-induced vascular remodeling through regulating mitochondrial fragmentation
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel instigator for mitochondrial dysfunction, and plays an important role in the pathogenesis of cardiovascular diseases. However, the role and mechanism of DNA-PKcs in angiotensin II (Ang II)-induced vascular remodeling remains obscur...
Gespeichert in:
Veröffentlicht in: | Redox biology 2023-11, Vol.67, p.102893-102893, Article 102893 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel instigator for mitochondrial dysfunction, and plays an important role in the pathogenesis of cardiovascular diseases. However, the role and mechanism of DNA-PKcs in angiotensin II (Ang II)-induced vascular remodeling remains obscure.
Rat aortic smooth muscle cells (SMC) and VSMC-specific DNA-PKcs knockout (DNA-PKcsΔVSMC) mice were employed to examine the role of DNA-PKcs in vascular remodeling and the underlying mechanisms. Blood pressure of mice was monitored using the tail-cuff and telemetry methods. The role of DNA-PKcs in vascular function was evaluated using vascular relaxation assessment.
In the tunica media of remodeled mouse thoracic aortas, and renal arteries from hypertensive patients, elevated DNA-PKcs expression was observed along with its cytoplasmic translocation from nucleus, suggesting a role for DNA-PKcs in vascular remodeling. We then infused wild-type (DNA-PKcsfl/fl) and DNA-PKcsΔVSMC mice with Ang II for 14 days to establish vascular remodeling, and demonstrated that DNA-PKcsΔVSMC mice displayed attenuated vascular remodeling through inhibition of dedifferentiation of VSMCs. Moreover, deletion of DNA-PKcs in VSMCs alleviated Ang II-induced vasodilation dysfunction and hypertension. Mechanistic investigations denoted that Ang II-evoked rises in cytoplasmic DNA-PKcs interacted with dynamin-related protein 1 (Drp1) at its TQ motif to phosphorylate Drp1S616, subsequently promoting mitochondrial fragmentation and dysfunction, as well as reactive oxygen species (ROS) production. Treatment of irbesartan, an Ang II type 1 receptor (AT1R) blocker, downregulated DNA-PKcs expression in VSMCs and aortic tissues following Ang II administration.
Our data revealed that cytoplasmic DNA-PKcs in VSMCs accelerated Ang II-induced vascular remodeling by interacting with Drp1 at its TQ motif and phosphorylating Drp1S616 to provoke mitochondrial fragmentation. Maneuvers targeting DNA-PKcs might be a valuable therapeutic option for the treatment of vascular remodeling and hypertension.
[Display omitted] |
---|---|
ISSN: | 2213-2317 2213-2317 |
DOI: | 10.1016/j.redox.2023.102893 |