Synthesis and Optical Properties of N -Arylnaphtho- and Anthra[2,3- d ]oxazol-2-amines

Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2025-01, Vol.30 (2), p.319
Hauptverfasser: Murata, Yuki, Kawakubo, Masato, Maruyama, Ayumi, Matsumura, Mio, Yasuike, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford -arylnaphtho- and -arylanthra[2,3- ]oxazol-2-amines via cyclodesulfurization. This reaction is the first example of synthesis of 2-aminoxazole-based polycyclic compounds using an electrochemical reaction. An examination of the spectroscopic properties of polycyclic oxazoles revealed that the λ value of the tetracyclic oxazoles was redshifted relative to that of the tricyclic oxazoles. Moreover, synthesized naphthalene/anthracene-fused tricyclic and tetracyclic oxazoles exhibited extended π-conjugated skeletons and fluoresced in the 340-430 nm region in chloroform.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules30020319