Novel Inhibitors of 2'- O -Methyltransferase of the SARS-CoV-2 Coronavirus

The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2'- -methyltransferase (nsp16) enzyme that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-04, Vol.27 (9), p.2721
Hauptverfasser: Sulimov, Alexey, Kutov, Danil, Ilin, Ivan, Xiao, Yibei, Jiang, Sheng, Sulimov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2'- -methyltransferase (nsp16) enzyme that is crucial for effective translation of viral RNA and virus replication. For methylation of substrates, nsp16 utilizes -adenosyl methionine (SAM). Binding of a small molecule in the protein site where SAM binds can disrupt the synthesis of viral proteins and, as a result, the replication of the virus. Here, we performed high-throughput docking into the SAM-binding site of nsp16 for almost 40 thousand structures, prepared for compounds from three libraries: Enamine Coronavirus Library, Enamine Nucleoside Mimetics Library, and Chemdiv Nucleoside Analogue Library. For the top scoring ligands, semi-empirical quantum-chemical calculations were performed, to better estimate protein-ligand binding enthalpy. Relying upon the calculated binding energies and predicted docking poses, we selected 21 compounds for experimental testing.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27092721