Mechanical and Thermal Properties of Polyether Polytriazole Elastomers Formed by Click-Chemical Reaction Curing Glycidyl Azide Polymer

Energetic binders are a research hot-spot, and much emphasis has been placed on their mechanical properties. In this study, propargyl-terminated ethylene oxide-tetrahydrofuran copolymer (PTPET) was synthesized. Then, PTPET and low-molecular-weight ester-terminated glycidyl azide polymer (GAP) were r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-04, Vol.25 (8), p.1988, Article 1988
Hauptverfasser: He, Liming, Zhou, Jun, Wang, Yutao, Ma, Zhongliang, Chen, Chunlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energetic binders are a research hot-spot, and much emphasis has been placed on their mechanical properties. In this study, propargyl-terminated ethylene oxide-tetrahydrofuran copolymer (PTPET) was synthesized. Then, PTPET and low-molecular-weight ester-terminated glycidyl azide polymer (GAP) were reacted by the click reaction without using catalysts to obtain a polyether polytriazole elastomer. Through tensile tests, where R = 0.5, the tensile strength reached 0.332 MPa, with an elongation at break of 897.1%. Swelling tests were used to measure the cross-linked network and showed that the cross-linked network regularity was reduced as Rincreased. The same conclusions were confirmed by dynamic mechanical analysis (DMA). In DMA curves, Tg was around 70 to 65 degrees C, and a small amount of crystallization appeared at between 50 and 30 degrees C, because locally ordered structures were also present in random copolymers, thereby forming localized crystals. Their thermal performance was tested by Differential Scanning Calorimeter (DSC) and Thermal Gravimetric Analyzer (TG), and the main mass loss occurred at around 350 to 450 degrees C, which meant that they were stable. In conclusion, the polyether polytriazole elastomer can be used as a binder in a composite propellant.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25081988