Preparation of Syntactic Foams made from Green Polyethylene and Glass Microspheres: Morphological and Mechanical Characterization
Polymeric syntactic foams are composites made from the mixture of Hollow Glass Microspheres (HGM) and polymer matrices. One of their main characteristics is their low density and the production of these composites using a matrix derived from renewable sources potentiates their development without ne...
Gespeichert in:
Veröffentlicht in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2019-01, Vol.22 (suppl 1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymeric syntactic foams are composites made from the mixture of Hollow Glass Microspheres (HGM) and polymer matrices. One of their main characteristics is their low density and the production of these composites using a matrix derived from renewable sources potentiates their development without neglecting sustainability. In this paper , the properties of High Density Polyethylene (HDPE)/HGM syntactic foams containing 1% and 5% w/w HGM and 5% w/w of a compatibilizer are assessed. The composites were prepared by two processing routes: single screw extruder and twin screw extruder. The morphology and mechanical properties (tensile and impact) of the syntactic foams thus manufactured were ascertained. Morphological analysis indicated that matrix/filler adhesion was poor for all samples and that the best HGM dispersions were obtained in twin screw extruded samples. Mechanical properties were affected by the processing route adopted and by the content of hollow glass microspheres added. Elastic modulus, tensile strength and strain were reduced by 20, 10 and 23%, respectively, in systems processed in a twin screw extruder. Impact strength was the exception, with an increase of more than 300%. Higher contents of hollow glass microspheres led to reductions in mechanical strength of the syntactic foams, varying from 5% for the elastic modulus to 50% for strain. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2019-0035 |