Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate

This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations (GNLV) of the magneto-electro-elastic (MEE) functionally graded (FG) plates incorporated with active treatment constricted layer damping (ATCLD) patches. The perpendicularly/slanted reinforced 1–3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defence technology 2022-06, Vol.18 (6), p.891-906
Hauptverfasser: Esayas, L. Sh, Kattimani, Subhaschandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations (GNLV) of the magneto-electro-elastic (MEE) functionally graded (FG) plates incorporated with active treatment constricted layer damping (ATCLD) patches. The perpendicularly/slanted reinforced 1–3 piezoelectric composite (1–3 PZC) constricting layer. The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-McTavish (GHM) technique. Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction. Considering the coupling effects among elasticity, electrical, and magnetic fields, a three-dimensional finite element (FE) model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation. The geometric nonlinearity adopts the von Kármán principle. The study presents the effects of a variant of a power-law index, porosity index, the material gradation, three types of porosity distribution, boundary conditions, and the piezoelectric fiber's orientation angle on the control of GNLV of the PMEE-FG plates. The results reveal that the FG substrate layers' porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates.
ISSN:2214-9147
2214-9147
DOI:10.1016/j.dt.2021.04.016