Prostate cancer diagnosis based on multi-parametric MRI, clinical and pathological factors using deep learning

Prostate cancer is one of the most common and fatal diseases among men, and its early diagnosis can have a significant impact on the treatment process and prevent mortality. Since it does not have apparent clinical symptoms in the early stages, it is difficult to diagnose. In addition, the disagreem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-06, Vol.14 (1), p.14951-12, Article 14951
Hauptverfasser: Sherafatmandjoo, Haniye, Safaei, Ali A., Ghaderi, Foad, Allameh, Farzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prostate cancer is one of the most common and fatal diseases among men, and its early diagnosis can have a significant impact on the treatment process and prevent mortality. Since it does not have apparent clinical symptoms in the early stages, it is difficult to diagnose. In addition, the disagreement of experts in the analysis of magnetic resonance images is also a significant challenge. In recent years, various research has shown that deep learning, especially convolutional neural networks, has appeared successfully in machine vision (especially in medical image analysis). In this research, a deep learning approach was used on multi-parameter magnetic resonance images, and the synergistic effect of clinical and pathological data on the accuracy of the model was investigated. The data were collected from Trita Hospital in Tehran, which included 343 patients (data augmentation and learning transfer methods were used during the process). In the designed model, four different types of images are analyzed with four separate ResNet50 deep convolutional networks, and their extracted features are transferred to a fully connected neural network and combined with clinical and pathological features. In the model without clinical and pathological data, the maximum accuracy reached 88%, but by adding these data, the accuracy increased to 96%, which shows the significant impact of clinical and pathological data on the accuracy of diagnosis.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-65354-0