EKTVQA: Generalized Use of External Knowledge to Empower Scene Text in Text-VQA
The open-ended question answering task of Text-VQA often requires reading and reasoning about rarely seen or completely unseen scene text content of an image. We address this zero-shot nature of the task by proposing the generalized use of external knowledge to augment our understanding of the scene...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.72092-72106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The open-ended question answering task of Text-VQA often requires reading and reasoning about rarely seen or completely unseen scene text content of an image. We address this zero-shot nature of the task by proposing the generalized use of external knowledge to augment our understanding of the scene text. We design a framework to extract, validate, and reason with knowledge using a standard multimodal transformer for vision language understanding tasks. Through empirical evidence and qualitative results, we demonstrate how external knowledge can highlight instance-only cues and thus help deal with training data bias, improve answer entity type correctness, and detect multiword named entities. We generate results comparable to the state-of-the-art on three publicly available datasets under the constraints of similar upstream OCR systems and training data. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3186471 |