Spatio-Temporal Characteristics and Driving Factors of the Foliage Clumping Index in the Sanjiang Plain from 2001 to 2015
The Sanjiang Plain is the largest agricultural reclamation area and the biggest marsh area in China. The regional vegetation coverage in this area is vital to local ecological systems, and vegetation growth is affected by natural and anthropogenic factors. The clumping index (CI) is of great signifi...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-07, Vol.13 (14), p.2797 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Sanjiang Plain is the largest agricultural reclamation area and the biggest marsh area in China. The regional vegetation coverage in this area is vital to local ecological systems, and vegetation growth is affected by natural and anthropogenic factors. The clumping index (CI) is of great significance for land surface models and obtaining information on other vegetation structures. However, most existing ecological models and the retrieval of other vegetation structures do not consider the spatial and temporal variations of CI, and few studies have focused on detecting factors that influence the spatial differentiation of CI. To address these issues, this study investigated the spatial and temporal characteristics of foliage CI in the Sanjiang Plain, analysing the correlation between CI and leaf area index (LAI) through multiple methods (such as Theil−Sen trend analysis, the Mann−Kendall test, and the correlation coefficient) based on the 2001−2015 Chinese Academy of Sciences Clumping Index (CAS CI) and Global LAnd Surface Satellite Leaf Area Index (GLASS LAI). The driving factors of the spatial differentiation of CI were also investigated based on the geographical detector model (GDM) with natural data (including the average annual temperature, annual precipitation, elevation, slope, aspect, vegetation type, soil type, and geomorphic type) and anthropogenic data (the land use type). The results showed that (1) the interannual variation of foliage CI was not obvious, but the seasonal variation was obvious in the Sanjiang Plain from 2001 to 2015; (2) the spatial distribution of the multiyear mean CI of each season in the Sanjiang Plain was similar to the spatial distribution of the land use type, and the CI decreased slightly with increases in elevation; (3) the correlation between the growing season mean CI (CIGS) and the growing season mean LAI (LAIGS) time series was not significant, but their spatial distributions were negatively correlated; (4) topographic factors (elevation and slope) and geomorphic type dominated the spatial differentiation of foliage CI in the Sanjiang Plain, and the interactions between driving factors enhanced their explanatory power in terms of the spatial distribution of foliage CI. This study can help improve the accuracy of the retrieval of other vegetation structures and the simulation of land surface models in the Sanjiang Plain, providing invaluable insight for the analysis of the spatial and temporal variations of veget |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13142797 |