Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD

At the outbreak of the animal epidemic disease, farms that recover quickly from partially infected state can delay or even suppress the wide spreading of the infection over farm networks. In this work, we focus on how the spatial transmission of the infection is affected by both factors, the topolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Kim, Pilwon, Lee, Chang Hyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At the outbreak of the animal epidemic disease, farms that recover quickly from partially infected state can delay or even suppress the wide spreading of the infection over farm networks. In this work, we focus on how the spatial transmission of the infection is affected by both factors, the topology of networks and the internal resilience mechanism of nodes. We first develop an individual farm model to examine the influence of initial number of infected individuals and vaccination rate on the transmission in a single farm. Based on such intrafarm model, the farm network is constructed which reflects disease transmission between farms at various stages. We explore the impact of the farms vaccinated at low rates on the disease transmission into entire farm network and investigate the effect of the control on hub farms on the transmission over the farm network. It is shown that intensive control on the farms vaccinated at low rates and hub farms effectively reduces the potential risk of foot-and-mouth disease (FMD) outbreak on the farm network.
ISSN:1076-2787
1099-0526
DOI:10.1155/2018/5024327