Total vertex irregularity strength for trees with many vertices of degree two

For a simple graph G = (V,E), a mapping φ : V ∪ E → {1,2,...,k} is defined as a vertex irregular total k-labeling of G if for every two different vertices x and y, wt(x) ≠ wt(y), where wt(x) = φ(x)+ Σxy∈E(G) φ(xy). The minimum k for which the graph G has a vertex irregular total k-labeling is called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of graph theory and applications 2020-01, Vol.8 (2), p.415-421
Hauptverfasser: Simanjuntak, Rinovia, Susilawati, Susilawati, Baskoro, Edy Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a simple graph G = (V,E), a mapping φ : V ∪ E → {1,2,...,k} is defined as a vertex irregular total k-labeling of G if for every two different vertices x and y, wt(x) ≠ wt(y), where wt(x) = φ(x)+ Σxy∈E(G) φ(xy). The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. In this paper, we provide three possible values of total vertex irregularity strength for trees with many vertices of degree two. For each of the possible values, sufficient conditions for trees with corresponding total vertex irregularity strength are presented.
ISSN:2338-2287
2338-2287
DOI:10.5614/ejgta.2020.8.2.17