Detection of Mycobacterium tuberculosis complex field infections in cattle using fecal volatile organic compound analysis through gas chromatography-ion mobility spectrometry combined with chemometrics
Bovine tuberculosis is considered a re-emerging disease caused by different species from the Mycobacterium tuberculosis complex (MTC), important not only for the livestock sector but also for public health due to its zoonotic character. Despite the numerous efforts that have been carried out to impr...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2023-10, Vol.11 (5), p.e0174323-e0174323 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bovine tuberculosis is considered a re-emerging disease caused by different species from the
Mycobacterium tuberculosis
complex (MTC), important not only for the livestock sector but also for public health due to its zoonotic character. Despite the numerous efforts that have been carried out to improve the performance of the current
antemortem
diagnostic procedures, nowadays, they still pose several drawbacks, such as moderate to low sensitivity, highlighting the necessity to develop alternative and innovative tools to complement control and surveillance frameworks. Volatilome analysis is considered an innovative approach which has been widely employed in animal science, including animal health field and diagnosis, due to the useful and interesting information provided by volatile metabolites. Therefore, this study assesses the potential of gas chromatography coupled to ion mobility spectrometry (GC-IMS) to discriminate cattle naturally infected (field infections) by MTC from non-infected animals. Volatile organic compounds (VOCs) produced from feces were analyzed, employing the subsequent information through chemometrics. After the evaluation of variable importance for the projection of compounds, the final discriminant models achieved a robust performance in cross-validation, as well as high percentages of correct classification (>90%) and optimal data of sensitivity (91.66%) and specificity (99.99%) in external validation. The tentative identification of some VOCs revealed some coincidences with previous studies, although potential new compounds associated with the discrimination of infected and non-infected subjects were also addressed. These results provide strong evidence that a volatilome analysis of feces through GC-IMS coupled to chemometrics could become a valuable methodology to discriminate the infection by MTC in cattle.
Bovine tuberculosis is endemic in many countries worldwide and poses important concerns for public health because of their zoonotic condition. However, current diagnostic techniques present several hurdles, such as low sensitivity and complexity, among others. In this regard, the development of new approaches to improve the diagnosis and control of this disease is considered crucial. Volatile organic compounds are small molecular mass metabolites which compose volatilome, whose analysis has been widely employed with success in different areas of animal science including animal health. The present study seeks to evaluate the co |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.01743-23 |