On quasistability of a vector combinatorial problem with \Sigma-MINMAX and \Sigma-MINMIN partial criteria

We consider one type of stability (quasistability) of a vector combinatorial problem of finding the Pareto set. Under quasistability we understand a discrete analogue of lower semicontinuity by Hausdorff of the many-valued mapping, which defines the Pareto choice function. A vector problem on a syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer science journal of Moldova 2004-06, Vol.12 (1(34)), p.3-24
Hauptverfasser: Vladimir A. Emelichev, Kirill G. Kuzmin, Andrey M. Leonovich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider one type of stability (quasistability) of a vector combinatorial problem of finding the Pareto set. Under quasistability we understand a discrete analogue of lower semicontinuity by Hausdorff of the many-valued mapping, which defines the Pareto choice function. A vector problem on a system of subsets of a finite set (trajectorial problem) with non-linear partial criteria is in focus. Two necessary and sufficient conditions for stability of this problem are proved. Mathematics Subject Classification: 2000, 90C10, 90C05, 90C29, 90C31
ISSN:1561-4042