On quasistability of a vector combinatorial problem with \Sigma-MINMAX and \Sigma-MINMIN partial criteria
We consider one type of stability (quasistability) of a vector combinatorial problem of finding the Pareto set. Under quasistability we understand a discrete analogue of lower semicontinuity by Hausdorff of the many-valued mapping, which defines the Pareto choice function. A vector problem on a syst...
Gespeichert in:
Veröffentlicht in: | Computer science journal of Moldova 2004-06, Vol.12 (1(34)), p.3-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider one type of stability (quasistability) of a vector combinatorial problem of finding the Pareto set. Under quasistability we understand a discrete analogue of lower semicontinuity by Hausdorff of the many-valued mapping, which defines the Pareto choice function. A vector problem on a system of subsets of a finite set (trajectorial problem) with non-linear partial criteria is in focus. Two necessary and sufficient conditions for stability of this problem are proved. Mathematics Subject Classification: 2000, 90C10, 90C05, 90C29, 90C31 |
---|---|
ISSN: | 1561-4042 |