Exploring coagulation parameters as predictive biomarkers of Plasmodium infection: A comprehensive analysis of coagulation parameters

Malaria affects the intravascular environment, leading to abnormal coagulation activation, prolonged prothrombin time, and activated partial thromboplastin time. Despite the high prevalence of malaria in the study area, there has been little published research on the effects of Plasmodium infection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-04, Vol.19 (4), p.e0301963-e0301963
Hauptverfasser: Tesfaye, Zelalem, Derso, Adane, Zeleke, Ayalew Jejaw, Addisu, Ayenew, Woldu, Berhanu, Deress, Teshiwal, Mekonnen, Gebeyaw Getnet, Tegegne, Yalewayker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria affects the intravascular environment, leading to abnormal coagulation activation, prolonged prothrombin time, and activated partial thromboplastin time. Despite the high prevalence of malaria in the study area, there has been little published research on the effects of Plasmodium infection on coagulation parameters. The aim was to assess the effect of malaria on basic coagulation parameters among patients attending Dembia Primary Hospital and Makisegnit Health Center. A cross-sectional study was carried out from January to March 2020. The study involved 120 participants. Blood specimens were collected, which were analyzed using a Huma Clot Due Plus analyzer. The collected data were entered into EpiData and exported to SPSS version 21 for analysis. Non-parametric statistical methods were employed to analyze the data. The results were considered statistically significant if the p-value was less than 0.05. Individuals infected with Plasmodium exhibit coagulation disorders with elevated levels of PT (Prothrombin Time), APTT (Activated Partial Thromboplastin Time), and INR (International Normalization Ratio) in comparison to healthy controls. The median PT, APTT, and INR values for infected cases were measured at 20.5 [8.6], 39.5 [17.9], and 1.8 [0.9], respectively, while healthy controls had measurements of 15.1 [2.5], 28.8 [8.3], and 1.3 [0.2] (p ≤ 0.001). The severity of coagulation disorders increased with an increase in parasitemia levels. The type of Plasmodium species present had a significant impact on PT and INR values (p ≤ 0.001), whereas APTT did not show any significant impact across the Plasmodium species (p > 0.05). The results of this study found that malaria has a substantial impact on various blood clotting parameters, including PT, APTT, and INR. Parasitemia severity is significantly associated with extended PT and INR, implying that the higher the parasitemia, the longer it takes for blood to clot. Furthermore, the study discovered that the PT and INR levels differed based on the type of Plasmodium species responsible for the infection.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0301963