Ensifer adhaerens strain OV14 seed application enhances Triticum aestivum L. and Brassica napus L. development
Given the challenges imposed by climate change and societal challenges, the European Union established ambitious goals as part of its Farm to Fork (F2F) strategy. Focussed on accelerating the transition to systems of sustainable food production, processing and consumption, a key element of F2F is to...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (5), p.e27142-e27142, Article e27142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the challenges imposed by climate change and societal challenges, the European Union established ambitious goals as part of its Farm to Fork (F2F) strategy. Focussed on accelerating the transition to systems of sustainable food production, processing and consumption, a key element of F2F is to reduce the use of fertilisers by at least 20% and plant protection products by up to 50% by 2030. In recent years, a substantial body of research has highlighted the potential impact of microbial-based applications to support crop production practices through both biotic/abiotic stresses via maintaining or even improving yields and reducing reliance on intensive chemical inputs. Here, we have characterised the ability of a new soil-borne free-living bacterium strain Ensifer adhaerens OV14 (EaOV14) to significantly enhance crop vigour index by up to 50% for monocot (wheat, Triticum aestivum L., p |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e27142 |