Adaptive Scale and Correlative Attention PointPillars: An Efficient Real-Time 3D Point Cloud Object Detection Algorithm

Recognizing 3D objects from point clouds is a crucial technology for autonomous vehicles. Nevertheless, LiDAR (Light Detection and Ranging) point clouds are generally sparse, and they provide limited contextual information, resulting in unsatisfactory recognition performance for distant or small obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-05, Vol.14 (9), p.3877
Hauptverfasser: Zhai, Xinchao, Gao, Yang, Chen, Shiwei, Yang, Jingshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recognizing 3D objects from point clouds is a crucial technology for autonomous vehicles. Nevertheless, LiDAR (Light Detection and Ranging) point clouds are generally sparse, and they provide limited contextual information, resulting in unsatisfactory recognition performance for distant or small objects. Consequently, this article proposes an object recognition algorithm named Adaptive Scale and Correlative Attention PointPillars (ASCA-PointPillars) to address this problem. Firstly, an innovative adaptive scale pillars (ASP) encoding method is proposed, which encodes point clouds using pillars of varying sizes. Secondly, ASCA-PointPillars introduces a feature enhancement mechanism called correlative point attention (CPA) to enhance the feature associations within each pillar. Additionally, a data augmentation algorithm called random sampling data augmentation (RS-Aug) is proposed to solve the class imbalance problem. The experimental results on the KITTI 3D object dataset demonstrate that the proposed ASCA-PointPillars algorithm significantly boosts the recognition performance and RS-Aug effectively enhances the training effects on an imbalanced dataset.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14093877