Increase of cell surface vimentin is associated with vimentin network disruption and subsequent stress-induced premature senescence in human chondrocytes

Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilagehomeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis(OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes areincompletely understood. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2023-10, Vol.12
Hauptverfasser: Riegger, Jana, Brenner, Rolf E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilagehomeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis(OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes areincompletely understood. Here, we provide evidence that disruption of the intracellularvimentin network and consequent phenotypical alteration in human chondrocytes results in anexternalization of the intermediate filament. The presence of the so-called cell surfacevimentin (CSV) on chondrocytes was associated with the severity of tissue degeneration inclinical OA samples and was enhanced after mechanical injury of cartilage tissue. By meansof a doxorubicine-based in vitro model of stress-induced premature senescence (SIPS), wecould confirm the connection between cellular senescence and amount of CSV. AlthoughsiRNA-mediated silencing of CDKN2A clearly reduced the senescent phenotype as well asCSV levels of human chondrocytes, cellular senescence could not be completely reversed.Interestingly, knockdown of vimentin resulted in a SIPS-like phenotype and consequentlyincreased CSV. Therefore, we concluded that the integrity of the intracellular vimentinnetwork is crucial to maintain cellular function in chondrocytes. This assumption could beconfirmed by chemically- induced collapse of the vimentin network, which resulted in cellularstress and enhanced CSV expression. Regarding its biological function, CSV was found to beassociated with enhanced chondrocyte adhesion and plasticity. While osteogenic capacitiesseemed to be enhanced in chondrocytes expressing high levels of CSV, the chondrogenicpotential was clearly compromised. Overall, our study reinforces the importance of thevimentin network in maintenance of the chondrogenic phenotype and introduces CSV as anovel membrane-bound marker of dysfunctional chondrocytes.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.91453