Analysis of the Ultimate Load-Bearing Capacity of Steel-Clad Concrete-Filled Steel Tube Arched Protective Doors under Blast Shock Waves
The mechanism of blast damage to steel-clad concrete-filled steel tube (SCCFST) arched protective doors is studied using the dynamic response characteristics of such loads under the action of blast shock wave loads, and the ultimate blast load-bearing capacity formula is derived based on the “plasti...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2023-06, Vol.13 (6), p.1424 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of blast damage to steel-clad concrete-filled steel tube (SCCFST) arched protective doors is studied using the dynamic response characteristics of such loads under the action of blast shock wave loads, and the ultimate blast load-bearing capacity formula is derived based on the “plastic hinge” damage mode of the doors using limit analysis, which explores the effect of the blast shock wave. The effect of the design parameters of each component of the protective door on the load-bearing capacity subjected to blast shock waves is discussed. Results show that the damage mechanism under a uniform radial load on the outer surface of the SCCFST arched protective door is characterized by the plastic hinge lines at the two arch feet, which results in a slip fracture and renders the protective door unstable. The load-bearing capacity of the SCCFST arched protective door depends on the coordinated functioning of the cross-sectional outer cladding steel plate and inner connecting partition, concrete-filled steel tube, and restraining concrete outside the steel tube. The load-bearing capacity of each of the three parts differs with the varying cross-sectional occupancies. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings13061424 |