Intelligent Microfluidics Research on Relative Permeability Measurement and Prediction of Two-Phase Flow in Micropores
Relative permeability is a key index in resource exploitation, energy development, environmental monitoring, and other fields. However, the current determination methods of relative permeability are inefficient and invisible without considering wetting order and pore structure characteristics either...
Gespeichert in:
Veröffentlicht in: | Geofluids 2021-12, Vol.2021, p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Relative permeability is a key index in resource exploitation, energy development, environmental monitoring, and other fields. However, the current determination methods of relative permeability are inefficient and invisible without considering wetting order and pore structure characteristics either. In this study, microfluidic experiments were designed for figuring out key factors impacting on the two-phase relative permeability. The optimized intelligent image recognition was established for saturation extraction. The deep learning was conducted for the prediction of two-phase permeability based on the inputs from microfluidic experiments and image recognition and optimized. Results revealed that phase saturation, wetting order, and pore topology were the key factors influencing the two-phase relative permeability, with the importance of 38.22%, 34.84%, and 26.94%, respectively. The deep learning-based relative permeability model performed well, with MSE |
---|---|
ISSN: | 1468-8115 1468-8123 |
DOI: | 10.1155/2021/1194186 |