End-to-End Deep Graph Convolutional Neural Network Approach for Intentional Islanding in Power Systems Considering Load-Generation Balance

Intentional islanding is a corrective procedure that aims to protect the stability of the power system during an emergency, by dividing the grid into several partitions and isolating the elements that would cause cascading failures. This paper proposes a deep learning method to solve the problem of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (5), p.1650
Hauptverfasser: Sun, Zhonglin, Spyridis, Yannis, Lagkas, Thomas, Sesis, Achilleas, Efstathopoulos, Georgios, Sarigiannidis, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intentional islanding is a corrective procedure that aims to protect the stability of the power system during an emergency, by dividing the grid into several partitions and isolating the elements that would cause cascading failures. This paper proposes a deep learning method to solve the problem of intentional islanding in an end-to-end manner. Two types of loss functions are examined for the graph partitioning task, and a loss function is added on the deep learning model, aiming to minimise the load-generation imbalance in the formed islands. In addition, the proposed solution incorporates a technique for merging the independent buses to their nearest neighbour in case there are isolated buses after the clusterisation, improving the final result in cases of large and complex systems. Several experiments demonstrate that the introduced deep learning method provides effective clustering results for intentional islanding, managing to keep the power imbalance low and creating stable islands. Finally, the proposed method is dynamic, relying on real-time system conditions to calculate the result.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21051650