Electronic Cognitive Screen Technology for Screening Older Adults With Dementia and Mild Cognitive Impairment in a Community Setting: Development and Validation Study

A digital cognitive test can be a useful and quick tool for the screening of cognitive impairment. Previous studies have shown that the diagnostic performance of digital cognitive tests is comparable with that of conventional paper-and-pencil tests. However, the use of commercially available digital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical Internet research 2020-12, Vol.22 (12), p.e17332-e17332
Hauptverfasser: Chan, Joyce Y C, Wong, Adrian, Yiu, Brian, Mok, Hazel, Lam, Patti, Kwan, Pauline, Chan, Amany, Mok, Vincent C T, Tsoi, Kelvin K F, Kwok, Timothy C Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A digital cognitive test can be a useful and quick tool for the screening of cognitive impairment. Previous studies have shown that the diagnostic performance of digital cognitive tests is comparable with that of conventional paper-and-pencil tests. However, the use of commercially available digital cognitive tests is not common in Hong Kong, which may be due to the high cost of the tests and the language barrier. Thus, we developed a brief and user-friendly digital cognitive test called the Electronic Cognitive Screen (EC-Screen) for the detection of mild cognitive impairment (MCI) and dementia of older adults. The aim of this study was to evaluate the performance of the EC-Screen for the detection of MCI and dementia in older adults. The EC-Screen is a brief digital cognitive test that has been adapted from the Rapid Cognitive Screen test. The EC-Screen uses a cloud-based platform and runs on a tablet. Participants with MCI, dementia, and cognitively healthy controls were recruited from research clinics and the community. The outcomes were the performance of the EC-Screen in distinguishing participants with MCI and dementia from controls, and in distinguishing participants with dementia from those with MCI and controls. The cohort was randomly split into derivation and validation cohorts based on the participants' disease group. In the derivation cohort, the regression-derived score of the EC-Screen was calculated using binomial logistic regression. Two predictive models were produced. The first model was used to distinguish participants with MCI and dementia from controls, and the second model was used to distinguish participants with dementia from those with MCI and controls. Receiver operating characteristic curves were constructed and the areas under the curves (AUCs) were calculated. The performances of the two predictive models were tested using the validation cohorts. The relationship between the EC-Screen and paper-and-pencil Montreal Cognitive Assessment-Hong Kong version (HK-MoCA) was evaluated by the Pearson correlation coefficient. A total of 126 controls, 54 participants with MCI, and 63 participants with dementia were included in the study. In differentiating participants with MCI and dementia from controls, the AUC of the EC-Screen in the derivation and validation cohorts was 0.87 and 0.84, respectively. The optimal sensitivity and specificity in the derivation cohorts were 0.81 and 0.80, respectively. In differentiating participants with
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/17332