Cooperative Navigation Algorithm of Extended Kalman Filter Based on Combined Observation for AUVs

The navigation and positioning of multi-autonomous underwater vehicles (AUVs) in the complex and variable marine environment is a significant and much-needed area of attention, especially considering the fact that cooperative navigation technology is the essential method for multiple AUVs to solve p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-01, Vol.15 (2), p.533
Hauptverfasser: Sheng, Guangrun, Liu, Xixiang, Sheng, Yehua, Cheng, Xiangzhi, Luo, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The navigation and positioning of multi-autonomous underwater vehicles (AUVs) in the complex and variable marine environment is a significant and much-needed area of attention, especially considering the fact that cooperative navigation technology is the essential method for multiple AUVs to solve positioning problems. When the extended Kalman filter (EKF) is applied for underwater cooperative localization, the outliers in the sensor observations cause unknown errors in the measurement system due to deep-sea environmental factors, which are difficult to calibrate and cause a significant reduction in the co-location accuracy of AUVs, and can even cause problems with a divergence of estimation error. In this paper, we proposed a cooperative navigation method of the EKF algorithm based on the combined observation of multiple AUVs. Firstly, the corresponding cooperative navigation model is established, and the corresponding measurement model is designed. Then, the EKF model based on combined observation is designed and constructed, and the unknown error is eliminated by introducing a previously measured value. Finally, simulation tests and lake experiments are designed to verify the effectiveness of the algorithm. The results indicate that the EKF algorithm based on combined observation can approximately eliminate errors and improve the accuracy of cooperative localization when the unknown measurement error cannot be calibrated by common EKF methods. The effect of state estimation is improved, and the accuracy of co-location can be effectively improved to avoid serious declines in—and divergence of—estimation accuracy.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15020533