N2O emission associated with shifts of bacterial communities in riparian wetland during the spring thawing periods

Soil freeze–thaw processes lead to high nitrous oxide (N2O) emissions and exacerbate the greenhouse effect. The wetlands of the Inner Mongolia Plateau are in the pronounced seasonal freeze–thaw zone, but the effect of spring thaw on N2O emissions and related microbial mechanisms is still unclear. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2023-03, Vol.13 (3), p.e9888-n/a
Hauptverfasser: Cao, Xiaoai, Liu, Huamin, Liu, Yang, Jing, Jin, Wen, Lu, Xu, Zhichao, Liu, Xuhua, Liu, Dongwei, Zhuo, Yi, Wang, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil freeze–thaw processes lead to high nitrous oxide (N2O) emissions and exacerbate the greenhouse effect. The wetlands of the Inner Mongolia Plateau are in the pronounced seasonal freeze–thaw zone, but the effect of spring thaw on N2O emissions and related microbial mechanisms is still unclear. We investigated the effects of different periods (freeze, freeze–thaw, and thaw) on soil bacterial community diversity and composition and greenhouse gas emissions during the spring freeze–thaw in the XiLin River riparian wetlands in China by amplicon sequencing and static dark box methods. The results showed that the freeze–thaw periods predominantly impact on the diversity and composition of the bacterial communities. The phyla composition of the soil bacteria communities of the three periods is similar in level, with Proteobacteria, Chloroflexi, Actinobacteria, and Acidobacteria dominating the microbial communities. The alpha‐diversity of bacterial communities in different periods varies that the freezing period is higher than that of the freeze–thaw period (p 
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.9888