Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy
Femtosecond laser ablation spark-induced breakdown spectroscopy (fs LA-SIBS) was developed to quantitatively analyze vanadium, molybdenum, chromium, manganese, aluminum, nickel, and copper in a steel alloy. In the experiment, a femtosecond laser operating at a repetition rate of 1 kHz was used as th...
Gespeichert in:
Veröffentlicht in: | Chemosensors 2022-09, Vol.10 (9), p.370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Femtosecond laser ablation spark-induced breakdown spectroscopy (fs LA-SIBS) was developed to quantitatively analyze vanadium, molybdenum, chromium, manganese, aluminum, nickel, and copper in a steel alloy. In the experiment, a femtosecond laser operating at a repetition rate of 1 kHz was used as the laser ablation source, and spark discharge was utilized to re-excite the plasma and enhance the atomic intensity. A compact fiber spectrometer was used to record and analyze the plasma emission spectra in a nongated signal-recording mode. The calibration curves of V, Mo, Cr, Mn, Al, Ni, and Cu elements in steel alloy samples were established, and the detection limits of these elements were determined to be 10.9, 12.6, 4.0, 5.7, 8.7, 7.9, and 3.1 ppm with fs LA-SIBS, respectively, which were 4–12-fold better than those achieved with femtosecond laser-induced breakdown spectroscopy (fs LIBS). Compared with conventional LIBS, the fs LA-SIBS technique provided a rapid and high spatial resolution approach to quantitative elemental analysis, with better analytical sensitivity. |
---|---|
ISSN: | 2227-9040 2227-9040 |
DOI: | 10.3390/chemosensors10090370 |