An automated ICU agitation monitoring system for video streaming using deep learning classification
To address the challenge of assessing sedation status in critically ill patients in the intensive care unit (ICU), we aimed to develop a non-contact automatic classifier of agitation using artificial intelligence and deep learning. We collected the video recordings of ICU patients and cut them into...
Gespeichert in:
Veröffentlicht in: | BMC medical informatics and decision making 2024-03, Vol.24 (1), p.77-77, Article 77 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the challenge of assessing sedation status in critically ill patients in the intensive care unit (ICU), we aimed to develop a non-contact automatic classifier of agitation using artificial intelligence and deep learning.
We collected the video recordings of ICU patients and cut them into 30-second (30-s) and 2-second (2-s) segments. All of the segments were annotated with the status of agitation as "Attention" and "Non-attention". After transforming the video segments into movement quantification, we constructed the models of agitation classifiers with Threshold, Random Forest, and LSTM and evaluated their performances.
The video recording segmentation yielded 427 30-s and 6405 2-s segments from 61 patients for model construction. The LSTM model achieved remarkable accuracy (ACC 0.92, AUC 0.91), outperforming other methods.
Our study proposes an advanced monitoring system combining LSTM and image processing to ensure mild patient sedation in ICU care. LSTM proves to be the optimal choice for accurate monitoring. Future efforts should prioritize expanding data collection and enhancing system integration for practical application. |
---|---|
ISSN: | 1472-6947 1472-6947 |
DOI: | 10.1186/s12911-024-02479-2 |