Hierarchical Porous, N-Containing Carbon Supports for High Loading Sulfur Cathodes

The lithium-polysulfide (LiPS) dissolution from the cathode to the organic electrolyte is the main challenge for high-energy-density lithium-sulfur batteries (LSBs). Herein, we present a multi-functional porous carbon, melamine cyanurate (MCA)-glucose-derived carbon (MGC), with superior porosity, el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (2), p.408
Hauptverfasser: Park, Jae-Woo, Hwang, Hyun Jin, Kang, Hui-Ju, Bari, Gazi A K M Rafiqul, Lee, Tae-Gyu, An, Byeong-Hyeon, Cho, Sung Yong, Jun, Young-Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lithium-polysulfide (LiPS) dissolution from the cathode to the organic electrolyte is the main challenge for high-energy-density lithium-sulfur batteries (LSBs). Herein, we present a multi-functional porous carbon, melamine cyanurate (MCA)-glucose-derived carbon (MGC), with superior porosity, electrical conductivity, and polysulfide affinity as an efficient sulfur support to mitigate the shuttle effect. MGC is prepared via a reactive templating approach, wherein the organic MCA crystals are utilized as the pore-/micro-structure-directing agent and nitrogen source. The homogeneous coating of spherical MCA crystal particles with glucose followed by carbonization at 600 °C leads to the formation of hierarchical porous hollow carbon spheres with abundant pyridinic N-functional groups without losing their microstructural ordering. Moreover, MGC enables facile penetration and intensive anchoring of LiPS, especially under high loading sulfur conditions. Consequently, the MGC cathode exhibited a high areal capacity of 5.79 mAh cm at 1 mA cm and high loading sulfur of 6.0 mg cm with a minor capacity decay rate of 0.18% per cycle for 100 cycles.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11020408