Quantitative prediction of toxin-producing Aphanizomenon cyanobacteria in freshwaters using Sentinel-2 satellite imagery
This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set...
Gespeichert in:
Veröffentlicht in: | Journal of water and health 2022-09, Vol.20 (9), p.1364-1379 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set of algorithms using in situ chlorophyll-a data with surface reflectance of Sentinel-2 bands on the same day using linear regression analysis. The in situ chlorophyll-a concentration was better regressed to the reflectance ratio of (1 + R665)/(1–R705) derived from B4 and B5 bands of Sentinel-2 with high reliability (R2 = 0.81, p < 0.001). The second regression model was developed to predict Aphanizomenon cell density using chlorophyll-a as the proxy and the relationship was strong and significant (R2 = 0.75, p |
---|---|
ISSN: | 1477-8920 1996-7829 |
DOI: | 10.2166/wh.2022.093 |