Quantitative prediction of toxin-producing Aphanizomenon cyanobacteria in freshwaters using Sentinel-2 satellite imagery

This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water and health 2022-09, Vol.20 (9), p.1364-1379
Hauptverfasser: Gunawardana, Menik Hitihami M. A. S. V., Sanjaya, Kelum, Atapaththu, Keerthi S. S., Yapa Mudiyanselage, Ajith L. W. Y., Masakorala, Kanaji, Widana Gamage, Shirani M. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to develop an empirical model to predict the spatial distribution of Aphanizomenon using the Ridiyagama reservoir in Sri Lanka with a dual-model strategy. In December 2020, a bloom was detected with a high density of Aphanizomenon and chlorophyll-a concentration. We generated a set of algorithms using in situ chlorophyll-a data with surface reflectance of Sentinel-2 bands on the same day using linear regression analysis. The in situ chlorophyll-a concentration was better regressed to the reflectance ratio of (1 + R665)/(1–R705) derived from B4 and B5 bands of Sentinel-2 with high reliability (R2 = 0.81, p < 0.001). The second regression model was developed to predict Aphanizomenon cell density using chlorophyll-a as the proxy and the relationship was strong and significant (R2 = 0.75, p
ISSN:1477-8920
1996-7829
DOI:10.2166/wh.2022.093