Non-isothermal crystallization behavioral analysis of detonation sprayed Fe-based amorphous coating
The non-isothermal crystallization behaviors of a detonation sprayed Fe-based amorphous coating (AMC) was systematically investigated through differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The crystallization mechanism of the Fe-based AMC is analyzed and d...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2023-03, Vol.23, p.6115-6126 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The non-isothermal crystallization behaviors of a detonation sprayed Fe-based amorphous coating (AMC) was systematically investigated through differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The crystallization mechanism of the Fe-based AMC is analyzed and discussed in detail using a combination of the Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall approaches, as well as the local Avrami exponent. The results indicate that the crystallization process of the Fe-based AMC is affected by the non-isothermal heating rate with a significantly higher initial crystallization activation energy (917.7 kJ mol−1) and first peak activation energy (479.6 kJ mol−1), indicating excellent thermal stability. After four stages of amorphous crystallization and phase transformation, the crystallization products of the equilibrium state were primarily composed of 78.5%, 11.3%, and 5.8% (Cr, Fe)23(C, B)6, α-Fe phases, and FeMo2B2 phases, respectively. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2023.02.203 |