Detonation driving rules for cylindrical casings under asymmetrical multipoint initiations

The detonation wave–aiming warhead can effectively enhance the lethality efficiency. In the past, rules for casing rupture and velocity distribution under asymmetrical initiations were not adequately investigated. In this study, X-ray photography and numerical modelling are used to examine the casin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defence technology 2023-05, Vol.23, p.35-49
Hauptverfasser: Li, Yuan, Li, Xiaogang, Wen, Yuquan, Suo, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detonation wave–aiming warhead can effectively enhance the lethality efficiency. In the past, rules for casing rupture and velocity distribution under asymmetrical initiations were not adequately investigated. In this study, X-ray photography and numerical modelling are used to examine the casing expansions under centre point, asymmetrical one-point, and asymmetrical two-point (with central angles of 45° and 90°) initiations. The results indicate that early casing ruptures are caused by local high pressures, induced by the initiation, detonation wave interaction, and Mach wave onset. The fragment shapes are controlled by the impact angle of the detonation wave. The fragment velocity distributions differ under different initiation types, and the end rarefaction waves can affect the velocity distribution. This study can serve as a reference for the design and optimization of high-efficiency warheads.
ISSN:2214-9147
2214-9147
DOI:10.1016/j.dt.2022.10.001