Spinal Astrocyte-Neuron Lactate Shuttle Contributes to the Pituitary Adenylate Cyclase-Activating Polypeptide/PAC1 Receptor-Induced Nociceptive Behaviors in Mice
We have previously shown that spinal pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP type 1 (PAC1) receptor signaling triggered long-lasting nociceptive behaviors through astroglial activation in mice. Since astrocyte-neuron lactate shuttle (ANLS) could be essential for long-term sy...
Gespeichert in:
Veröffentlicht in: | Biomolecules (Basel, Switzerland) Switzerland), 2022-12, Vol.12 (12), p.1859 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have previously shown that spinal pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP type 1 (PAC1) receptor signaling triggered long-lasting nociceptive behaviors through astroglial activation in mice. Since astrocyte-neuron lactate shuttle (ANLS) could be essential for long-term synaptic facilitation, we aimed to elucidate a possible involvement of spinal ANLS in the development of the PACAP/PAC1 receptor-induced nociceptive behaviors. A single intrathecal administration of PACAP induced short-term spontaneous aversive behaviors, followed by long-lasting mechanical allodynia in mice. These nociceptive behaviors were inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of glycogenolysis, and this inhibition was reversed by simultaneous L-lactate application. In the cultured spinal astrocytes, the PACAP-evoked glycogenolysis and L-lactate secretion were inhibited by DAB. In addition, a protein kinase C (PKC) inhibitor attenuated the PACAP-induced nociceptive behaviors as well as the PACAP-evoked glycogenolysis and L-lactate secretion. Finally, an inhibitor for the monocarboxylate transporters blocked the L-lactate secretion from the spinal astrocytes and inhibited the PACAP- and spinal nerve ligation-induced nociceptive behaviors. These results suggested that spinal PAC1 receptor-PKC-ANLS signaling contributed to the PACAP-induced nociceptive behaviors. This signaling system could be involved in the peripheral nerve injury-induced pain-like behaviors. |
---|---|
ISSN: | 2218-273X 2218-273X |
DOI: | 10.3390/biom12121859 |