Crystalline Derivatives of Dipyrazolo-1,5-diazocine and Dipyrazolopyrimidine: A Case of Unexpected Synthesis and Isostructural Polymorphism

Pyrazole-phenylmethanimines (Shiff bases), Py–N=CH–Ph, form molecular crystals whose supramolecular and self-assembly properties can be tuned according to the substitution made on the aromatic and pyrazole rings. In pursuit of the first pyrazole-pyridinemethanimine member, Py–N=CH–Pyr, by following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2022-05, Vol.12 (5), p.714
Hauptverfasser: Cuenú-Cabezas, Fernando, Abonia, Rodrigo, Gómez Castaño, Jovanny A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyrazole-phenylmethanimines (Shiff bases), Py–N=CH–Ph, form molecular crystals whose supramolecular and self-assembly properties can be tuned according to the substitution made on the aromatic and pyrazole rings. In pursuit of the first pyrazole-pyridinemethanimine member, Py–N=CH–Pyr, by following the well-known synthetic scheme for these Shiff bases, two hitherto unknown crystalline derivatives of dipyrazolo-1,5-diazocine and dipyrazolopyrimidine were obtained instead, this depending on the use or not of acetic acid as the catalyst. 1,5-diazocine crystallizes in a single P-1 triclinic packing system (Z = 2, Z′ = 1), while dipyrazolopyrimidine exhibits isostructural dimorphic behavior by adopting two (pale pink and yellow) alike P21/c monoclinic systems (both Z = 4, Z′ = 1) as a function of the solvent used. Crystal structures were resolved by means of X-ray diffraction technique and their intramolecular, intermolecular, and supramolecular assemblies analyzed with the assistance of decorated Hirshfeld surfaces and the topology study of electron density using the quantum-theory of atoms in molecules (QTAIM). Although both dipyrazolopyrimidine polymorphs are stabilized by the same type of noncovalent motifs, the pale pink crystal has a slightly more compact structure, with more efficient inter- and intramolecular interactions.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12050714