Fast Falling Weight Deflectometer Method for Condition Assessment of RC Bridges
In this paper, the use of Fast Falling Weight Deflectometer (Fast-FWD) is analyzed as a non-destructive and quick test procedure to evaluate the efficiency of short-span bridges. The Fast-FWD is an instrument that can produce a broadband dynamic force up to an impact value of 120 KN: The impact is c...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-02, Vol.11 (4), p.1743 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the use of Fast Falling Weight Deflectometer (Fast-FWD) is analyzed as a non-destructive and quick test procedure to evaluate the efficiency of short-span bridges. The Fast-FWD is an instrument that can produce a broadband dynamic force up to an impact value of 120 KN: The impact is constant and replicable, providing accurate action measures of bridge stiffness in a truly short period (30 ms). In this paper, a single-span reinforced concrete bridge is investigated, using the Fast-FWD. The considered bridge, approximately 12.0 m long and 15.5 m wide, was in critical condition. The bridge is in a suburban principal road near to the City of Cagliari in Sardinia (Italy), with an Annual Average Daily Traffic of 13,500 vehicles/day, and was suddenly closed, creating serious problems for urban mobility. In these conditions, the investigation through other standard techniques is time-consuming and labor intensive. For this reason, it is important to introduce methods that can be rapid, accurate and cost-efficient. In this paper, bridge stiffness values obtained during the in situ experimental campaign were compared with finite element models values. The Fast-FWD has the potential to provide engineering information that can help us to better understand bridge condition, in a rapid and cost-effective procedure. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11041743 |