An Efficient Extended Targets Detection Framework Based on Sampling and Spatio-Temporal Detection
Excellent performance, real-time and low memory requirement are three vital requirements for target detection in high resolution marine radar system. Unfortunately, many current state-of-the-art methods merely achieve excellent performance when coping with highly complex scenes. In fact, a common pr...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-07, Vol.19 (13), p.2912 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excellent performance, real-time and low memory requirement are three vital requirements for target detection in high resolution marine radar system. Unfortunately, many current state-of-the-art methods merely achieve excellent performance when coping with highly complex scenes. In fact, a common problem is that real-time processing, low memory requirement and remarkable detection ability are difficult to coordinate. To address this issue, we propose a novel detection framework which bases its principle on sampling and spatiotemporal detection. The framework consists of two stages, coarse detection and fine detection. Sampling-based coarse detection is designed to guarantee the real-time processing and low memory requirements by locating the area where targets may exist in advance. Different from former detection methods, multi-scan video data are utilized. In the stage of fine detection, the candidate areas are grouped into three categories: single target, dense targets and sea clutter. Different approaches for processing the different categories are implemented to achieve excellent performance. The superiority of the proposed framework beyond state-of-the-art baselines is well substantiated in this work. Low memory requirement of the proposed framework was verified by theoretical analysis. Real-time processing capability was verified by the video data of two real scenarios. Synthetic data were tested to show the improvement in tracking performance by using the proposed detection framework. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19132912 |