Stability and Bifurcation Analysis for a Predator-Prey Model with Discrete and Distributed Delay

We propose a two-dimensional predatory-prey model with discrete and distributed delay. By the use of a new variable, the original two-dimensional system transforms into an equivalent three-dimensional system. Firstly, we study the existence and local stability of equilibria of the new system. And, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.246-257-528
Hauptverfasser: Shi, Ruiqing, Qi, Junmei, Tang, Sanyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a two-dimensional predatory-prey model with discrete and distributed delay. By the use of a new variable, the original two-dimensional system transforms into an equivalent three-dimensional system. Firstly, we study the existence and local stability of equilibria of the new system. And, by choosing the time delay τ as a bifurcation parameter, we show that Hopf bifurcation can occur as the time delay τ passes through some critical values. Secondly, by the use of normal form theory and central manifold argument, we establish the direction and stability of Hopf bifurcation. At last, an example with numerical simulations is provided to verify the theoretical results. In addition, some simple discussion is also presented.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/454097